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Abstract
This study explores perpendicular transport through macroscopically
inhomogeneous three-dimensional disordered conductors using mesoscopic
methods (the real-space Green function technique in a two-probe measuring
geometry). The nanoscale samples (containing ∼1000 atoms) are modelled
by a tight-binding Hamiltonian on a simple cubic lattice where disorder
is introduced in the on-site potential energy. I compute the transport
properties of: disordered metallic junctions formed by concatenating two
homogeneous samples with different kinds of microscopic disorder, a single
strongly disordered interface, and multilayers composed of such interfaces
and homogeneous layers characterized by different strengths of the same
type of microscopic disorder. This allows us to: contrast the resistor model
(semiclassical) approach with a fully quantum description of dirty mesoscopic
multilayers; study the transmission properties of dirty interfaces (where the
Schep–Bauer distribution of transmission eigenvalues is confirmed for a single
interface, as well as for a stack of such interfaces that is thinner than
the localization length); and elucidate the effect of coupling to ideal leads
(‘measuring apparatus’) on the conductance of both bulk conductors and
dirty interfaces. When a multilayer contains a ballistic layer in between
two interfaces, its disorder-averaged conductance oscillates as a function
of the Fermi energy. I also address some fundamental issues in quantum
transport theory—the relationship between the Kubo formula in the exact state
representation and the ‘mesoscopic Kubo formula’ (which gives the exact zero-
temperature conductance of a finite-size sample attached to two semi-infinite
ideal leads) is thoroughly re-examined by comparing their outcomes for both
the junctions and homogeneous samples.
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1. Introduction

The experimental discovery [1, 2] of a giant-magnetoresistance (GMR) phenomenon has
revived interest in the transport properties of macroscopically inhomogeneous conductors,
such as metallic junctions [3] and multilayers [4]. Furthermore, unusual systems for traditional
transport theory, like single dirty interfaces [5] which are ubiquitous elements in such circuits,
have entailed the introduction of new concepts to replace usual quantities (e.g., mean free
path �) used to describe transport in bulk samples. Although some of these problems were
formulated long ago within the (semiclassical) transport theory [6–8], new attacks have
employed all (quantum and semiclassical) transport formalisms developed thus far, revealing
that such problems are by no means resolved [4, 9]. In particular, the re-examination of
various fundamental issues in transport theory has been brought about by the experimental
and theoretical advances in mesoscopic physics [10]. Thus, the Landauer–Büttiker scattering
formalism [11] has been frequently invoked to study transport in both non-magnetic [12] and
magnetic multilayered conductors [13, 14]. Obviously, the thorough understanding of transport
properties due to purely multilayer + disorder effects is a prerequisite for the analysis of more
complicated phenomena in inhomogeneous structures.

Besides providing the means to compute the (quantum) conductance of finite-size samples,
mesoscopic methods give additional physical insight by delineating transmission properties of
the sample. The finite size of mesoscopic systems plays an important role in determining the
conductance through the scattering approach, but no further limitations exist—the exactness of
results obtained in this manner is heavily exploited throughout the paper. Practical realization
of this programme appears in different incarnations, i.e., different Landauer-type [15] or
Kubo [16] formulae for a finite-size phase-coherent sample attached to semi-infinite ideal
(disorder-free) leads. These prescriptions are usually made computationally efficient by
combining them with some Green function technique [17, 18].

Here I employ mesoscopic quantum transport methods to calculate the conductance of
disordered samples which are macroscopically inhomogeneous, i.e., composed of different
homogeneous conductors (‘layers’) joined through some interfaces (‘monatomic layers’). In
homogeneous conductors, whose properties have been well studied throughout the history
of localization theory [19], impurities generate only microscopic inhomogeneity on the scale
∼λF (Fermi wavelength). Our goal is twofold:

(1) Most mesoscopic studies have been focused on the bulk homogeneous conductors [18]
in the weak scattering transport regime. Only recently have systems such as metallic
multilayers [12] or single dirty interfaces [5, 20] been tackled in this manner. By employing
non-perturbative numerical methods we can access strongly disordered junctions, single
strongly disordered interfaces (when stacked together to form a bulk conductor, our
interfaces would form an Anderson insulator),and multilayers composed of such interfaces
and bulk diffusive or ballistic mesoscopic conductors. A system is called mesoscopic
if its size L is smaller than the dephasing length Lφ , which is a typical distance for
an electron to travel without losing its phase coherence (Lφ � 1 µm in current low-
temperature experiments), and is therefore determined by decoherence processes caused
by the coupling to the environment either through inelastic scattering (electron–electron
and electron–phonon) or just by the change of the environment quantum state (e.g.,
spin-flip scattering from a magnetic impurity). The term metallic implies that the
conductance G of a bulk homogeneous sample is much larger than the conductance
quantum G Q = 2e2/h. For interfaces one needs a different nomenclature: they are termed
‘dirty’ [5] if their conductance G/G Q is much smaller than the number of conducting
channels Nch (Nch ∼ k2

F S in three dimensions, with kF = 2π/λF , and S is the cross-
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section of a sample). Lacking a better language, I denote the multilayers studied here as
‘dirty metallic’, meaning that scattering is due to a random potential and their conductance
is G M � G Q Nch. Nevertheless, layer components are chosen to be metallic G � G Q , and
are well described, in the diffusive limit L � �, by semiclassical transport theory [21].
In terms of material parameters, the resistivity of a bulk homogeneous material, from
which nanoscopic layers are cut out, is few 100 µ� cm, which is typical of dirty
transition metal alloys. Thus, the possible small conductance of layers is not necessarily
caused by approaching the localization–delocalization transition [22] upon increasing
disorder, as is usual in homogeneous bulk samples. The conductors are modelled by
a tight-binding Hamiltonian (TBH) with on-site potential disorder. This corresponds
to a model of free electrons (understood here as Landau quasiparticles with parameters
renormalized by both band structure effects and Fermi liquid interaction) with random
point scatterers [9], which is used frequently in studies of similar systems. While isotropic
scattering sets semiclassical vertex corrections to zero (which are determined by ladder
diagrams [23] generating the difference between momentum relaxation time and elastic
mean free time, or the scattering-in term in the Boltzmann theory), it does not eliminate
the higher-order quantum interference vertex corrections. These terms are non-local on
the mesoscopic length scale Lφ , and therefore invalidate [4] the concept of local position-
dependent conductivity σ(x) as the usual way of describing the multilayered structures
(in semiclassical approximation) [9]. Since I exploit here exact techniques, all quantum
localization effects which are not necessarily small in dirty systems [9, 21] are included
from the outset. All three types of sample are studied for electron transport perpendicular
to the layers (or interfaces), which is the so-called current-perpendicular-to-plane (CPP)
geometry [4]. Once the disorder-averaged resistance of the multilayer is computed, we
can compare it to the resistance given by the resistor model [24], (i.e., a sum of the bulk
layers and interface resistances connected like classical ohmic resistors in a series).

(2) I investigate some fundamental issues in the quantum transport theory using dirty metallic
junctions as described above as a testing ground, as well as homogeneous disordered
samples as a reference. That is, I compare the transport properties computed from the
Kubo formula in the exact single-particle state representation (which was widely used [25]
in the ‘premesoscopic’ era [26] of the Anderson localization theory) and the ‘mesoscopic
Kubo formula’ for the open finite-size system attached to two ideal leads [16]. In the
former case the system is closed and the eigenproblem of the Hamiltonian is solved
exactly by numerical diagonalization, while in the latter case energy levels of a sample
are broadened by the coupling to the leads, and I use real-space Green functions for such
an open sample plugged into the Kubo formula [16] (which is then equivalent to the
Landauer two-probe formula [27]) to get its conductance. Also, the influence of the leads
(‘measuring apparatus’) and the lead–sample coupling on the conductance (which is akin
to the problems encountered in quantum measurement theory [28]) is explicitly quantified.

The paper is organized as follows. Section 2 deals with some general remarks on the
Kubo linear response formalism and current conservation. This should serve as a guide for
proper application of Kubo formulae on the finite-size systems. In section 3, the Kubo formula
in exact state representation is compared to the Kubo formula for the finite-size sample by
evaluating them for dirty metallic junctions, as well as for homogeneous samples. Section 4
presents the results on the transmission properties, and conductance derived from them, of a
single dirty interface as well as thin layers composed of few such interfaces. The calculations
are completed in section 5 by examining different types of multilayer, containing disordered
and/or ballistic layers concatenated through the interfaces described in section 4. Section 6
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provides a summary of the technical results, emphasizing physical insights gained from them.

2. Kubo formulae and current conservation

The basic global transport property, for small applied voltage, is linear conductance (or
equivalent resistance R = 1/G). The conductance G is defined by the Ohm’s law:

I = GV , (1)

relating the current I to the voltage drop V . Since this is a plausible relation for a linear
transport regime, more information is contained in the local form of the Ohm’s law:

j(r, ω) =
∫

dr′ σ(r, r′; ω) · E(r′, ω). (2)

In what follows, the focus will be on the DC transport ω → 0. Although it is possible to treat
E(r) as an externally applied electric field and then include the effects of Coulomb interaction
between electrons as a contribution to the vertex correction [4], the usual approach is to use the
total (local and inhomogeneous)electric field E(r) ≡ Eloc(r) = −∇µ(r)/e, which is the sum
of external field plus the field due to the charge redistribution from the system response [45].
The electrons are then treated as independent quasiparticles. The electrochemical potential
µ in non-equilibrium situations (like transport) is not a well-defined quantity, and can serve
only, e.g., to parametrize the carrier population [29]. The relation (2) defines the meaning of
the non-local conductivity tensor (NLCT) σ (r, r′) as the fundamental microscopic quantity
in the linear response theory. This quantity gives the current response at r due to an electric
field at r′. The requirement of current conservation in the DC transport

∇ · j(r) = 0, (3)

coupled to equation (2) and together with appropriate boundary conditions at infinity or possible
interfaces [30], makes it possible to find E(r). The conductance (power dissipated by the
voltage V squared) is then given by

G = 1

V 2

∫
�

dr E(r) · j(r) = 1

V 2

∫
�

dr dr′ E(r) · σ(r, r′) · E(r′), (4)

where � is the sample volume, and at first sight appears to require knowledge of local electric
fields within the sample. However, it was shown in the course of recent re-examination
of transport theory [31], driven by the problems of mesoscopics, that current conservation
imposes stringent requirements on the form of the NLCT:

∇ · σ(r, r′) = σ(r, r′) · ∇′ = 0, (5)

where absence of magnetic field is assumed to get this special case of a more general
theorem [27]. This allows us to use arbitrary electric field factors in equation (4), including
E(r) �= E(r′) (a homogeneous field E = V/L across a sample of length L is usually assumed
in the textbook literature [23]).

When a finite-size sample is attached to two semi-infinite ideal leads, the condition (5) is
sufficient to show that [27]

G = −
∫

S1

∫
S2

dS1 · σ(r, r′) · dS2, (6)

by using the divergence theorem to push the integration from the bulk onto the boundary
surface2 going through the leads and around the disordered sample (the integration over this
2 Technical subtleties (like proper order of non-commuting limits) in finding zero and non-zero surface terms in the
microscopic formulation of linear transport in open systems are detailed in [27].
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insulating boundary obviously gives zero contribution because no current flows out of it).
The surface integration in the two-probe conductance formula (6) is over surfaces S1 and
S2 separating the leads from the disordered sample. The vectors dS1 and dS2 are normal
to the cross-sections of the leads, and are directed outwards from the region encompassed
by the overall surface (composed of S1, S2 and insulating boundaries of the sample). It is
assumed that voltage in one of the leads is zero, e.g., µL = 0 and µR = eV . The meaning of
current conservation and expression (6) are quite transparent: current I at a given cross-section
depends only on the voltages in the leads (in experiment one either fixes this voltage by using
a voltage source, or fixes the current by using a current source) and not on the precise electric
field configurations. The formula (6) can be generalized [27] to arbitrary multiprobe geometry,
while the volume-averaged conductance (4) is meaningful only for the two-probe measurement.
The expression (6) is valid even in the presence of interactions, where many-body effects can
be introduced using Kubo formalism to get σ (r, r′) microscopically. However, this route is
tractable and useful especially in the case of non-interacting quasiparticle systems. When a
sample is attached to ideal leads (see below), this establishes rigorous equivalence [27] between
two different linear response formulations—Kubo and Landauer–Büttiker [11] (to work out the
proof, S1 and S2 should be placed far enough into the leads that all evanescent modes from the
sample have died out and do not contribute to the conductance [4]). In the scattering approach
to transport, pioneered by Landauer through heuristic and subtle arguments, the conductance
of a non-interacting system is then expressed in terms of the probabilities of transmission
between different quantized transverse propagating modes defined by the leads as asymptotic
scattering states (see equation (28)).

Although the Boltzmann formalism can provide a semiclassical expression for NLCT
(which is non-local on the scale of the sample size because of the classical requirement
of current conservation [32]), the standard quantum route to it is the Kubo linear response
theory (KLRT). Linear response theory gives a full quantum description of transport (i.e., it
includes quantum interference effects in the motion of electrons3) in non-equilibrium systems
that are still close enough to equilibrium for vanishingly small applied external electric
field4. Therefore, the formulae above involve the equilibrium expectation values of the
corresponding quantum-mechanical operators, in accordance with the fluctuation-dissipation
theorem underlying KLRT (e.g., it is assumed that j(r) is the expectation value of the current
density operator in the quantum formalism). While the current is a response to the total electric
field (external + induced), the NLCT is obtained as a response to the external field only [33, 34]
because the current induced by the external field is already linear in the field. Therefore, in
the linear response one does not need the corrections due to induced non-equilibrium charges
(also electron–electron interactions should be treated in equilibrium, e.g. through renormalized
parameters of the Landau quasiparticles and the self-consistent screening effect on the impurity
scattering).

Since Kubo NLCT is not an experimentally measurable quantity, the macroscopic
conductivity σ is obtained by volume averaging NLCT through equation (4) where σ = GL/S
for a cubic sample of length L and cross-section S (the limit � = LS → ∞ is assumed, while
keeping the impurity concentration finite). This usually implies homogeneous E(r) factors—
which is justified by the fact that Kubo expression for NLCT is divergenceless (as can be easily

3 For a long time it seemed that these rigorous (quantum) formulations of transport were merely serving to justify
the intuitively appealing Boltzmann approach. The new viewpoint came with the first explicit calculation of quantum
corrections like weak localization [42]—a quantum interference effect which generates a negative correction term to
the Boltzmann result, and is responsible at low temperatures for all of the temperature and magnetic field dependence.
4 The relation of ‘vanishing’ eV to the other relevant energy scales in the linear (quantum) transport regime is reviewed
in [18].
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proven [31] from its current–current correlation form [23]), i.e., satisfying equation (5). Thus,
the volume-averaged conductivity σ relates the spatially averaged current j = ∫

dr j(r)/�

to the spatially averaged electric field:

j = σE. (7)

For a non-interacting system of fermions this leads to a Kubo formula in the exact single-
particle state representation (KFESR):

σxx = 2π h̄e2

�

∑
α,α′

|〈α|v̂x |α′〉|2δ(Eα − EF)δ(Eα′ − EF ), (8)

where the factor of two for spin degeneracy will be explicit in all formulae. The delta functions
in equation (8) emphasize that conductivity is a Fermi surface (EF is the Fermi energy)
property at low temperatures (T → 0 ⇒ −∂ f (E)/∂ E � δ(EF − E), f (E) being the
Fermi–Dirac distribution function). Here v̂x is the x-component of the velocity operator and
|α〉 are eigenstates of a single-particle Hamiltonian, Ĥ |α〉 = Eα|α〉. The velocity operator v̂

is determined through the equation of motion for the position operator r̂:

ih̄v̂ = ih̄
dr̂

dt
= [r̂, Ĥ ], (9)

where Ĥ is the Hamiltonian before the application of the external electric field (in the spirit of
FDT).

In the general case, conductivity is a tensor,but since symmetries are restored after disorder
averaging, one can useσ = (σxx +σyy+σzz)/3 as the scalar conductivity. This is valid only in the
case of a homogeneously disordered sample. For example, in our metal junction or multilayers,
σxx is different from σyy and σzz . To get the conductivity (as an intensive quantity) in KLRT, the
thermodynamic limit � is always understood (no stationary regime can be reached in a system
which is neither infinite nor coupled to some thermostat). In the disordered electron physics,
this also bypasses the ambiguity of conductivity which scales [35] with the length of the
system (although scaling is unimportant [22] in the metallic regime G � G Q). Nonetheless,
the computation of transport properties from exact single-particle eigenstates, obtained by
the numerical diagonalization of Hamiltonian of a finite-size system, has been frequently
employed throughout the history of disordered electron physics [25]. In fact, it is still the
standard method for computing the conductivity of many-body systems where small clusters
of some lattice fermion Hamiltonian are diagonalized [36], or in the calculations of high-
temperature resistivity which treat phonons semiclassically by diagonalizing a single-particle
Hamiltonian with frozen random atomic displacements [37]. However, direct application of
the formula (8) leads to trouble, since eigenvalues are discrete when the sample is finite and
isolated. Strictly speaking, the conductivity is then a sum of delta functions, and to obtain
finite conductivity they have to be broadened into functions having a finite width larger than
the level spacing. Thus, there are two numerical tricks which can be used to ‘circumvent’ this
problem: (i) one can start from the Kubo formula for the frequency-dependent conductivity:

σxx (ω) = 2π h̄e2

�

∑
α,α′

|〈α|v̂x |α′〉|2 f (Eα) − f (Eα′)

h̄ω
δ(Eα − Eα′ − h̄ω), (10)

average the result over finite ω-values, and finally extrapolate [38] to the static limit ω → 0;
(ii) the delta functions in equation (8) can be broadened into a Lorentzian

δ(x) → δ̄(x) = 1

π

(η/2)2

x2 + (η/2)2
, (11)
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where η is the full width at half-maximum of the Lorentzian. I find that the two methods
produce similar results. The calculations presented below use the broadened delta function
δ̄(x) in the formula for static Kubo conductivity.

The Green operator of a non-interacting Hamiltonian (with specified boundary conditions):

Ĝr,a = [E − Ĥ ± iη]−1 (12)

contains the same information as is encoded in the single-particle wavefunction. Therefore,
using the expansion of the single-particle Green operator Ĝr,a = ∑

α |α〉〈α|/(E − Eα ± iη)

in terms of exact eigenstates, the Kubo formula for the macroscopic (volume-averaged)
longitudinal conductivity can be recast into the following expression [39]:

σxx = 2πe2h̄

�
Tr[v̂xδ(E − Ĥ)v̂xδ(E − Ĥ)], (13a)

δ(E − Ĥ) = − 1

π
Im Ĝ = 1

2i
(Ĝr − Ĝa). (13b)

When employing this formula one faces the same problem as in the KFESR—in order to
define [40] the retarded (r ) or advanced (a) Green function, a small parameter η → 0+

requires numerical handling [41] analogous to that (11) involved in the KFESR (8). However,
it is possible to derive another, ‘mesoscopic Kubo formula’ for the finite-size sample attached
to two semi-infinite clean leads [16, 27]. This formula represent a fully quantum-mechanical
expression for the zero-temperature conductance:

Gxx = 4e2

h

1

L2
x

Tr(h̄v̂x Im Ĝh̄v̂x Im Ĝ), (14)

which, being measurable, is the only meaningful quantity to discuss in mesoscopics (the
alternative is to introduce conductivity as the NLCT). That is, for quantum-coherent samples
(L > Lφ), local description of transport in terms of conductivity breaks down because of the
non-local correction (e.g., weak localization [42]) induced on the scale of Lφ � �, which
is much larger than the elastic mean free path. Thus, a mesoscopic sample has to be treated
as a single coherent unit (‘giant molecule’), so its conductance cannot be interpreted as a
combination G = σ A/L of the conductances of its parts (i.e., such description becomes
applicable only at high enough temperatures). Although the formula (14) apparently looks
like equation (13), the crucial difference is that the following Green operator is plugged in
there instead:

Ĝr,a = [E − Ĥ − �̂r,a ]−1. (15)

This change is not innocuous: Ĝr (Ĝa = [Ĝr ]†, �̂a = [�̂r ]†) has acquired a self-energy term
from the ‘interaction’ with the leads [18]. This looks like the self-energy term in the many-body
Green functions, but this one is exactly calculable, as shown below. Thus, the leads enforce
new boundary conditions. Since �̂r (E) contains an imaginary part when energy E belongs to
the band of a lead, no small parameter η is needed to define the retarded or advanced Green
operator.

The lattice model of a two-probe measuring geometry, to be used in the subsequent
sections for evaluation of equation (14), is shown in figure 1. The three-dimensional (3D)
nanocrystal (‘sample’) is placed between two ideal (disorder-free) semi-infinite ‘leads’ which
are connected smoothly to macroscopic reservoirs at infinity. The electrochemical potential
difference eV = µL − µR , which drives the current [43], is measured between the reservoirs.
It is assumed that reservoirs inject thermalized electrons at electrochemical potential µL (from
the left) or µR (from the right) into the system. All inelastic scattering occurs in the reservoirs,
which therefore ensure steady-state transport in the central region. Semi-infinite leads [44]
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µL µR

LEAD           SAMPLE        LEAD

V

x

yz

 PARTICLE  RESERVOIRS

ttC t L

Figure 1. A two-dimensional version of the actual 3D model used here for a two-probe measuring
geometry. Each site hosts a single s orbital which hops to six (or fewer for surface atoms) nearest
neighbours. The hopping matrix element is t (within the sample), tL (within the leads), and tC
(coupling of the sample to the leads). The leads are semi-infinite and connected smoothly at ±∞
to macroscopic reservoirs biased by the chemical potential difference µL − µR = eV .

are a convenient means to take into account electrons entering or leaving the phase-coherent
sample (i.e., the effective Hamiltonian of an open system, Ĥ + �̂r in equation (15), is non-
Hermitian). This makes it possible to bypass explicit modelling of the thermodynamics of
perfect (i.e., unaffected by the flow of current) macroscopic reservoirs which are introduced
heuristically in the scattering approach (for a different interpretation of the role of perfectly
conducting leads in the derivation of the Kubo formula for a finite-size system, see [45]). The
leads have the same cross-section as the sample, which eliminates scattering induced by the
wide-to-narrow geometry at the sample–lead interface [46]. The whole system is described
by the following Hamiltonian with nearest-neighbour hopping integrals tmn:

Ĥ =
∑
m

εm|m〉〈m| +
∑

〈m,n〉
tmn|m〉〈n|. (16)

where 〈r|m〉 is the s orbital ψ(r − m) located on site m. The site representation, defined by
the basis states |m〉, can be interpreted either as a tight-binding description of electronic states
or as discretization of the corresponding single-particle Schrödinger equation. The sample is
the central section with N × Ny × Nz sites. The hopping in the sample sets the unit of energy
tmn = t . The disorder will be introduced by taking εm to be a random variable. The leads are
clean (εm = 0) but, in general, have different hopping integrals tmn = tL �= t . Finally, the
hopping which couples the sample to the leads is tmn = tC. Hard-wall boundary conditions
are set in the ŷ- and ẑ-directions. The different hopping integrals introduced here are necessary
when studying disordered samples to get the conductance at Fermi energies throughout the
whole band extended (compared to the clean case) by disorder, i.e., in such calculations one
has to set tL > t .

In site representation, the Green operator Ĝr,a becomes a Green function matrix
Ĝr,a(n,m) = 〈n|Ĝr,a |m〉. The self-energy �̂r = �̂r

L + �̂r
R ‘measures’ the coupling of

the sample to the leads. This causes the broadening of initially discrete levels and, thus, the
finite lifetime of the electron in the sample. Since an electron which leaves the sample does not
return phase coherently, the dephasing length is by definition Lφ = Lx . Each lead generates
its self-energy term which has non-zero matrix elements only on the edge layers of the sample
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which are adjacent to the leads. They are defined as

�̂r
L ,R(n,m) = t2

C ĝr
L ,R(nS,mS), (17)

with ĝr
L ,R(nS,mS) being the surface Green function of a bare semi-infinite lead between the

sites nS and mS in the end atomic layer of the lead [18] (adjacent to the corresponding sites n

and m inside the conductor). I provide here an explicit expression for these self-energy terms
in the most general case, when hopping integrals t �= tC �= tL are different in different parts of
the set-up, in figure 1:

�̂r
L ,R(n,m) = 2

Ny + 1

2

Nz + 1

∑
ky ,kz

sin(kynya) sin(kznza)�̂r (ky, kz) sin(kym ya) sin(kzmza).

(18)

This expression is obtained by expanding the surface Green function ĝr
L ,R(nS,mS) in terms

of exact eigenstates of the Hamiltonian of a semi-infinite lead, which satisfy particular
hard-wall transverse boundary conditions. Here (n,m) is the pair of sites on the surfaces
inside the sample which are adjacent to the leads L or R, in accordance with (17). Since
electrons are confined in the y- and z-directions, electronic states in the lead have transverse
wavefunctions which are labelled by the discrete quantum numbers. They define subbands
and corresponding conducting ‘channels’ (i.e., transverse propagating modes as the product
of transverse wavefunctions and Bloch waves in the x-direction, 〈m|ky, kz〉 ⊗ |kx〉), which
represent a basis of scattering states for the scattering matrix of the disordered region, as
envisaged in the Landauer picture of quantum transport. The self-energy �̂r (ky, kz) of the
channel (ky, kz) is given by

�̂r (ky, kz) = t2
C

2t2
L

(
E� − i

√
4t2

L − E2
�

)
, (19)

for |E�| < 2tL. I use the shorthand notation E� = E − ε(ky, kz), where ε(ky, kz) =
2tL[cos(kya)+cos(kza)] is the energy of quantized transverse levels in the lead. In the opposite
case |E�| > 2tL we get

�̂r (ky, kz) = t2
C

2t2
L

(
E� − sgnE�

√
E2

� − 4t2
L

)
. (20)

When the level spacing of the subbands is much smaller than EF , the number of channels at
EF is large and the finite-size model can describe a metal. The possibility of evaluating these
self-energies exactly allows us to avoid the inversion of an infinite matrix which would formally
give the Green function for the whole system [18] in figure 1. The real-space Green function
technique described here, pioneered by Caroli et al [15] long before the official inception of
mesoscopic physics, treats an infinite system with a continuous spectrum by evaluating only
the Green function between the states inside the sample. This offers an alternative to handling
a finite-size sample through periodic boundary conditions, whose discrete spectrum prevents
a direct evaluation of the Kubo formulae (8) and (13). In general, the technical advantage
of Green function techniques is that they can be used even when well-defined asymptotic
conducting channels in the scattering approach to quantum transport are hard to define (e.g.,
this is the case when leads have complicated shape [47], making it hard to get explicitly the
exact asymptotic eigenstates and their eigenspectrum).

The mesoscopic Kubo formula can be evaluated at any (continuous) Fermi energy. At
first sight, it seems like that this leads to a much greater computational complexity than in
the case of KFESR because of the need to find inverse matrix in equation (15) at each chosen
energy, and then perform the trace over the site states Tr(. . .) = ∑

m〈m|(. . .)|m〉. On the
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other hand, in the KFESR one needs to diagonalize the Hamiltonian only once and then use
the eigenstates obtained to compute matrix elements of the velocity operator in the eigenbasis.
However, this is only an apparent difficulty once the conservation of current is invoked. Since
all Kubo formulae for conductance stem from equation (4), one has to assume (or choose)
some electric field factors therein. Current conservation, i.e., the fact that I has to be the same
on each cross-section, means that the conductance is independent of this choice. The minimal
space for tracing, when the system is described by a TBH in equation (16), is obtained by
taking both factors E(r) and E(r′) to be non-zero only on two adjacent planes of the lattice.
That is, the expectation value of the velocity operator (9) in the site representation is non-zero
only between the states residing on adjacent planes:

〈m|v̂x |n〉 = i

h̄
tmn(mx − nx), (21)

for a TBH (16) with nearest-neighbour hopping. The final result is then to be divided by a2

(instead of L2
x in equation (14)).

Thus, only a block matrix 2Nz Ny × 2Nz Ny of the Green function for the whole sample
has to be computed explicitly (e.g., those elements which connect the first two planes of the
sample in figure 1). Because [E − Ĥ −�̂r ] is a band-diagonal matrix of bandwidth 2Ny Nz +1,
one can substantially shorten the time needed to compute this block of the Green function (15)
by finding the LU decomposition of a band-diagonal matrix, followed by forward–backward
substitution for each Green function element needed [48]. This requires a similar number of
operations [49] to the more familiar recursive Green function technique [44].

3. Transport through dirty metal junctions

This section studies the static DC transport properties of a metal junction composed of two
disordered conductors with different kind of disorder introduced on each side of the contact
interface. Both conductors are modelled as a disordered binary alloy (i.e., composed of two
types of atom, A and B) using the TBH of equation (16). The quenched disorder is simulated
by taking the random on-site potential such that εm is either εA or εB , with equal probability.
Specifically, I take the lattice as 18 × 8 × 10 on each side of the junction and for the binary
disorder: εA = −4, εB = 0 on the left; and εA = 4 and εB = 0 on the right. Thus, the junction
has naturally a rough interface [14] because of the random positions of three different types of
atom around the plane in the middle of the junction.

We commence with a description of the junction, as well as the homogeneous samples
used as a reference, in terms of traditional Kubo theory based on the KFESR (8). Although [44]
stated as one of the motivations for undertaking the rigorous derivation of the Landauer two-
probe formula from KLRT that traditional use of the Kubo formula [25] was numerically
demanding, today’s computers are much more powerful, and it is of interest to compare this
method to a modern [16] mesoscopic use of the Kubo formula. Kubo theory permits discussion
of the diffusivity Dα of an eigenstate |α〉. This quantity is extracted directly from the KFESR
for a Fermi gas of non-interacting quasiparticles:

σ = 1

ρ
= e2

�

∑
α

(
− ∂ f

∂ Eα

)
Dα = e2 N(EF )D̄. (22)

Thus, the quantum diffusivity is given explicitly by the following expression:

Dx
α = π h̄

∑
α′

|〈α|v̂x |α′〉|2δ(Eα − Eα′). (23)

In the semiclassical regime, Dα → Dk = vk�k/3. However, Dα can also be used to
characterize transport in strong disorder causing non-perturbative quantum effects, which
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invalidate semiclassical concepts (e.g. putative mean free path l in this transport regime,
extracted from the semiclassical Boltzmann equation, would be smaller than the lattice
spacing [21].

To simplify the calculations, I compute the quantum diffusivity 〈Dx(EF )〉 averaged over
the disorder (〈· · ·〉 denotes averaging over an impurity ensemble), as well as over a small energy
interval. This is additional transport information, obviously related to conductivity (22), which
is not usually seen in the literature on disordered electron physics [50]. It has been exploited
in the transport physics of glasses (e.g., to study the thermal conductivity in amorphous
silicon [38]). The width η of the Lorentzian δ̄(Eα − Eα′) in (23) is chosen as some multiple
of the local average level spacing �(Eα) in a small energy interval around the eigenenergy
Eα . The method of computing 〈Dx(EF )〉 is as follows: a set of eigenstates (the number of
eigenstates is equal to the number of lattice sites Ns = N × Ny × Nz ) is obtained by numerical
diagonalization; �→ for each eigenstate I compute Dx

α , where the summation is over all states
|α′〉 ‘picked’ by the Lorentzian δ̄(Eα − E ′

α) (centred on Eα) in an energy interval of 3η around
Eα; �→ finally, I average the diffusivities over the disorder and energy interval defined by a bin
of size �E = 0.0225. The efficient way of calculating quantum-mechanical average values
of some operator, such as 〈α|v̂x |α′〉 appearing in the definition of eigenstate diffusivity (23), is
to multiply three matrices α̂†v̂x α̂, where α̂ is a matrix containing eigenvectors |α〉 as columns,
and then take the modulus squared of each matrix element in such a product. The number of
operations in the naive calculation of the expectation values of the operator, where each of
them is calculated separately, scales as ∼N4

s , while in the method presented above it scales as
∼N3

s (Ns × Ns is the dimension of the operator matrix). This procedure becomes a natural
choice once we understand that it actually transforms the matrix of the operator v̂x from the
defining (site) representation into the representation of eigenstates |α〉. The end result of the
calculation, the average diffusivity 〈Dx 〉, is related to the conductivity through the Einstein
relation

σxx = e2 N(EF )〈Dx (EF )〉. (24)

Here N(EF ) is the density of states (DOS) (for both spin components) evaluated at the Fermi
level EF .

I first calculate 〈Dx(EF )〉 for the homogeneously disordered sample (with binary disorder
εA = −2, εB = 2) modelled on an 18 × 8 × 10 lattice, as shown in figure 2. To get insight
into the microscopic features of the eigenstates used to evaluate the KFESR (a few eigenstates
around each EF determine the transport properties at EF ), this figure also plots the inverse
participation ratio (IPR) [51]

I2 = �

〈∑
m,α

|�α(m)|4δ(E − Eα)

〉
, (25)

averaged over disorder and energy [�α(m) = 〈m|α〉]. This is the simplest single-number
measure of the degree of localization (i.e., the bigger the IPR, the more localized the state;
e.g. IPR = Ns corresponds to a completely localized state on one lattice site). The IPR can
also be related to the average return probability [19] that a particle, initially launched in a state
|m〉 localized on a lattice site m, will return to the same site after a very long time (which
is determined by its diffusive properties encoded in Dα). The second calculation, shown in
figure 3, is for the homogeneous sample described by the standard Anderson model where
εm ∈ [−W/2, W/2] is a uniform random variable. This results are to be compared to the
reference calculation based on the mesoscopic Kubo formula.

Strictly speaking, the concept of ‘eigenstate’ does not apply to open systems. Such
systems can be characterized by non-Hermitian Hamiltonians [18], which do not conserve
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Figure 2. Diffusivity 〈Dx (EF )〉 of a disordered binary alloy modelled by a TBH with quenched
disorder (εA = −2 and εB = 2) on an 18 × 8 × 10 lattice: (a) computed using the Kubo
formula (14) in terms of the Green function for the sample with attached leads; (b) computed from
the Kubo formula in the exact single-particle eigenstate representation (23), where the width of
the Lorentzian-broadened delta function is η = 25�(EF ). Also plotted (c) is the IPR, defined in
equation (25), which gives insight (i.e., degree of localization) into the structure of eigenstates used
to evaluate the Kubo formula, equation (23). The disorder averaging is performed over 50 samples.
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Figure 3. The result of the same computation of 〈Dx (EF )〉 as in figure 2, but for a different type
of disorder, a diagonal one of strength W = 10, introduced in the sample (the same labels apply to
both figures).

total probability (cf section 2). This is a consequence of a simple physical fact that an electron
stays for a finite time within the sample before escaping into the surrounding leads (i.e., initial
discrete energy levels are broadened by the coupling to the leads). Nonetheless, we can still
get [22] the DOS from the imaginary part of the Green function (15):

N(EF ) =
∑
m

− 1

π
Im Ĝr (m,m; EF ). (26)

That such a DOS of an open 3D system is indistinguishable from the one computed from the
distribution of energy eigenvalues, N(EF ) = (2/�)〈∑α δ(EF − Eα)〉, is shown in figure 4.
This is in spite of the fact that leads strongly perturb the edges of the system, which is clearly
exhibited only for the smallest lattice in figure 4. Thus, the average diffusivity 〈Dx(EF )〉 can
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Figure 4. The DOS of: (a) clean metal (W = 0); (b) dirty metal (W = 6 on a 15 × 15 × 15 lattice
averaged over 50 disorder configurations), obtained as N(E) = (2/�)

∑
α δ(E − Eα) from the

exact eigenspectrum Eα of a closed sample Hamiltonian; (c) dirty metal (W = 6 on a 10 × 10 × 10
lattice averaged over 50 disorder configurations), obtained from the imaginary part, equation (26),
of the Green function (15) of an open sample. (d) is computed in the same way as (c) except that
a smaller lattice, 4 × 4 × 4, is used.

be computed in a straightforward manner from the Einstein relation (24) where conductivity
is formally expressed in terms of the disorder-averaged conductance σxx = 〈Gxx 〉Lx/S given
by the mesoscopic Kubo formula.

In both calculations for the homogeneous samples it appears that the discrepancy between
the Kubo formula in the single-particle representation (8) and the exact method, based on the
formula (14) for the sample + lead system, is only numerical. In fact, the difference is very small
in the disordered binary alloy and a bit larger in the Anderson model with continuous disorder.
It originates from the ambiguity in using the width η of the broadened delta function. That
is, non-zero η effectively introduces inelastic scattering as an uncorrelated random event [41].
The increase of the diffusivity close to the band edges of the diagonally disordered Anderson
model (cf figure 3) was seen a long time ago in direct simulations of the wavefunction diffusion
performed in the early days of localization theory [50].

The same analysis is repeated for a junction (introduced at the beginning of this section)
which is composed of two different disordered binary alloys on each side. The result is
shown in figure 5. Large fluctuations of the diffusivity (i.e., quantum conductance G from
which the diffusivity is computed at specific EF ) are caused by the conductance being of
the order of 2e2/h (figure 8). Such fluctuations are less obvious in the result based on the
KFESR because of the extra averaging over energy provided by the Lorentzian-broadened delta
function. Here the discrepancy between the two different methods is not only quantitative,
but the KFESR (8) shows non-zero diffusivity (and thereby conductivity, since the global
DOS is non-zero throughout the band) at Fermi energies at which there are no states on one
side of the junction which can carry the current5. The result persists even when the width
η of the Lorentzian-broadened delta function is decreased. Therefore, it is not an artefact of
the numerical trick used to evaluate the KFESR. The states which have non-zero amplitude
throughout the junction cease to exist at |Eb| ∼ 4.7, which is seen by inspecting the local

5 Intricacies in the application of the Kubo formula to finite-size samples, ‘extended’ through periodic boundary
conditions, were discovered also in some other condensed matter problems, e.g. in the conduction in the 1D Hubbard
model, see [52].
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Figure 5. Diffusivity 〈Dx (EF )〉 for a metal junction composed of two disordered binary alloys
(modelled by a TBH on a 36 × 8 ×10 lattice): (a) computed using the Kubo formula (14) in terms of
the Green function for the sample with attached leads; and computed from the Kubo formula in the
exact single-particle eigenstate representation (23), where the width of the Lorentzian-broadened
delta function is (b) η = 25�(EF ), (c) η = 10�(EF ), and (d) η = 5�(EF ). Disorder averaging
is performed over 50 different samples.

density of states (LDOS), integrated over y- and z-coordinates:

ρ(mx , E) =
∑

my ,mz

ρ(m, E) =
∑

my,mz

∑
α

|�α(m)|2δ(E − Eα). (27)

Such ‘planar LDOS’ along the x-axis is plotted in figure 6. It changes abruptly when going
from one side of the junction to the other side (except for the small tails near the interface).
On the other hand, figure 5 explicitly demonstrates that the Kubo formula (14) for an open
finite-size sample plugged between ideal semi-infinite leads correctly describes this junction.
That is, the diffusivity vanishes at the same point at which the LDOS goes to zero. It should be
emphasized that once the leads are attached, two new interfaces (lead–sample) in the problem
arise. The Landauer–Büttiker scattering approach to transport intrinsically takes care of these
boundaries by considering a realistic finite-size system where electrons can leave or enter
through some surfaces into the rest of the circuit represented by the leads [43, 52]. Thus,
mesoscopic developments have clarified the way to properly apply the Kubo formulism to
finite-size samples (which is ultimately related to the eternal puzzle of the origins of dissipation
in conservative systems, technically the only ones appearing in the Kubo analysis) [53]. This
in turn has justified heuristic arguments of Landauer on a rigorous basis [27, 44].

The conductance of an infinite (sample + leads) system will go to zero at the band edge
of a clean lead |Eb| = 6t if we use the same hopping parameter in the lead tL = t as in
the disordered sample. This stems from the fact that are no states in the leads which can
carry the current for Fermi energies |EF | > 6t outside of the clean TBH band. Technically,
the self-energy �̂r is real at these energies, which leads to Im Ĝ in (14) being zero. Thus,
the conductance of the whole band of the disordered sample cannot be computed unless we
increase tL in the leads. This is illustrated in figure 7 for the homogeneous sample described
by the Anderson model where the band edge of the disordered sample |Eb| > 6t lies outside
of the clean metal band defined by crystal symmetry. Thus, a natural question arises when
using tL, tC �= t: how sensitive is the conductance to the properties of leads or the sample–lead
coupling? This problem resembles the quantum measurement problem because semi-infinite
leads can also be viewed as a macroscopic apparatus necessary for measurement [28, 55].
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Figure 6. The LDOS integrated over the y- and z-coordinates inside the metal junction studied in
figure 5. This ‘planar LDOS’ ρ(mx , E) is computed from the exact eigenstates of the TBH using
equation (27). The result is plotted after ρ(mx , E) is averaged over several planes along the x-axis
(the planes used in this procedure are given on each panel).

This is further stressed in multiprobe geometries [18] where extra leads are introduced to
measure the voltages along the sample (besides the two leads, used here, through which the
current is fed). The measured conductance is then a property of both the sample and the
measurement geometry, which is one of the reasons for mesoscopic physics employing only
sample- and measurement-geometry-specificquantities, such as quantum conductance, instead
of intensive quantities, such as conductivity [33]. From a transport point of view, it is clear
that lead–sample interfaces introduce extra scattering for different effective masses or Fermi
velocities in the sample and the lead. Thus, the exactness of the conductance calculated here
is, in fact, a feature of the whole sample + leads set-up in figure 1 (that is akin to any kind of
measurement in quantum mechanics), and it is important to confirm that general conclusions
about the relationship between different Kubo formulae do not depend on particular values of
the chosen parameters for the leads.

It is understood [54] that if the broadening of the energy levels due to the coupling to semi-
infinite leads is greater than the Thouless energy ETh � h̄D/L2, (D is the diffusion constant,
i.e. the average quantum diffusivity introduced in this section), then level discreteness of an
isolated sample is unimportant and G will be independent of the properties of the leads. This
limit corresponds to an ‘intrinsic’ (Thouless) conductance G/G Q = 2π ETh/� (� is the mean
level spacing) that is smaller than the conductance determined by the lead–sample contact [56].
It requires a sufficiently disordered sample [55] and leads of the same cross-section as that of
the sample [56]. Thus, even though attaching the sample to the leads causes dramatic changes
(the discrete spectrum is changed into a continuous one and new boundary conditions are
introduced), the conductance is determined by the sample properties only, and dissipation in
the reservoirs does not enter into the computational algorithm. This dependence is studied in
figure 8 by looking at the conductance of our model junction as a function of the hopping in
the leads tL and the coupling tC. The conductance is virtually independent of tL, which is a
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Figure 7. Two-probe conductance of a disordered conductor (averaged over 50 samples) modelled
by the Anderson model with diagonal disorder W = 6 on a simple cubic lattice 103. The
computation is done using the mesoscopic Kubo formula (14) for the finite sample attached to
two semi-infinite leads characterized by two different values of the hopping integral tL. Note that
the conductance vanishes at |E| = 6t (band edge in a clean sample) when tL = t .
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Figure 8. Two-probe conductance (averaged over 50 samples) of the same dirty metallic junction
sample as in figure 5, but attached to two semi-infinite ideal leads with several different hopping
integrals tL or lead–sample couplings tC (the hopping integral in the sample sets the unit of energy
t = 1). The computation is based on the mesoscopic Kubo formula equation (14).

consequence of the smallness of the disordered junction conductance (as discussed above). It
goes down drastically with decrease of the coupling tC (the same behaviour is anticipated when
tL is increased substantially because of the increased reflection at the lead–sample interface).

4. Transport through a strongly disordered interface

In this section we analyse quantum transport properties of a single dirty interface whose
dimensionless conductance G/G Q is much smaller than the number of conducting channels
Nch (i.e., much smaller than the conductance of a ballistic conductor of the same cross-section).
For practical purposes, the interface can be defined as any scattering region whose thickness is
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sufficiently shorter than [5] λF (in bulk conductors, L � λF ). Here we look at a geometrical
plane of atoms as a model of an interface in the strict sense. Furthermore, we look at the
evolution of transport from a single dirty interface to a strongly disordered thin slab (i.e.,
‘thin Anderson insulators’, since stacking together enough finite-size interfaces, with the
disorder strength chosen here, would lead to a bulk Anderson insulator with exponentially
small conductance). Such thin slabs are a more likely element in experimental circuits [20].
These problems are not only conceptual—namely, how to understand the difference between
the transport in bulk conductors and interfaces—but also have been raised by the understanding
of crucial effects that the interface scattering can have in the CPP transport experiments [57]
on GMR magnetic multilayers (in GMR the added complication is spin-dependent interface
resistance [58] which dominates the resistance and magnetoresistance for layer thicknesses
that are not too large [59]).

The importance of interface scattering in many areas of metal and semiconductor physics
has been realized in a plethora of research papers since the seminal work of Fuchs [7]. They are
mainly concerned with the transport parallel to an impenetrable rough interface, while recently
interest has also arisen in the transport normal to the interface (CPP geometry). Because the
nature of the transport relaxation time in inhomogeneous systems is not well understood [4],
the first step is to understand properties of a single interface before studying them as a part
of some more complicated circuit such as those in section 5. For example, the properties of
a single interface cannot be described in terms of the Boltzmann conductivity σB = ne2τ/m,
i.e., using the elastic mean free path � = vFτ (or transport mean free time τ ) familiar from the
bulk metallic conductors whose conductivity is dominated by the semiclassical effects.

Lacking enough experimental information, the simple theoretical models for the interface
effects on electron propagation assume diffuse scattering at interdiffused atoms or interfacial
roughness [60] (these free electron theories omit the complex electronic band structure of
transition metals appearing in realistic GMR samples). Even a disorder-free interface can have
a non-zero resistance, because of mismatch of the crystal potential and band structures [4].
Here we are interested only in generic properties of mesoscopic transport through interfaces
that do not depend on material-specific details [5]. Therefore, the interface roughness is
modelled here by the short-range random scattering potential [12] generated by the impurities
located on the sites of a square lattice, 1 × Ny × Nz , and with strong disorder WI = 30 in the
corresponding TBH equation (16). The bulk conductor composed of such interfaces (stacked
in parallel and coupled with nearest-neighbour hopping t) is an Anderson insulator, because
all states are localized already for [61] Wc � 16.5. To compute the CPP transport properties
using the mesoscopic Kubo formula (14), the interface is placed in our standard computational
set-up between the two semi-infinite disorder-free leads. Thus, the conductance is computed
for an atomic monolayer of a disordered material inside an infinite clean sample of finite cross-
section shown in figure 1. Also computed is the conductance of a thin slab composed of two
(i.e., a 3D conductor modelled on the 2 × Ny × Nz lattice) and three sheets (3 × Ny × Nz ) of
the same disordered material, as shown in figure 9. The microscopic origin of different terms
contributing to the interface resistance was traced back to both specular and diffusive scattering
in the plane (where diffusive scattering can even open additional channels for electron transport,
thereby increasing the conductance) [4].

Following the discussion in section 3, the influence of the leads on the interface
conductance is checked by using two different hopping integrals tL (compare to figure 7).
Here the analysis based on comparison of relevant energy scales does not work (i.e., one
cannot use bulk material concepts, like ETh). Plausibly, I find that leads affect the conductance
of the interface much more than the conductance of a bulk disordered conductor (with a similar
value of disorder-averaged conductance).
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Figure 9. Conductance of a single dirty interface (N = 1) and thin slabs composed of two (N = 2)
or three (N = 3) such interfaces (modelled by the Anderson model with diagonal disorder WI = 30
on an N × 10 × 10 lattice). The calculation is performed using different values of the hopping
parameter tL in the attached leads, and the results are averaged over 200 realizations of disorder.

Mesoscopic transport methods give the possibility not only to compute the conductance,
but also to use the picture of conducting channels and their quantum-mechanical transmission
properties. From a pragmatic point of view, one does not need these fully quantum techniques
to study the transport in macroscopic conductors which are usually dominated by semiclassical
physics. Nevertheless, the study of the distribution of transmission probabilities, which
requires phase-coherent transport, enhances our insight into the conduction processes in
electronic systems. The diagonalization of a Hermitian matrix tt†, which defines the
conductance through the Landauer formula:

G = 2e2

h
Tr(tt†) = 2e2

h

Ny Nz∑
n=1

Tn, (28a)

t = 2
√

−Im �̂L Ĝr
1N

√
−Im �̂R, (28b)

introduces a set of transmission eigenvalues 0 � Tn � 1 for each realization of disorder.
The incident flux concentrated in channel |p〉 will give the wavefunction in the opposite lead∑

q tpq |q〉, where t is the transmission matrix. Here Ĝr
1N is the matrix block, which connects

layers 1 and N of the sample, of the full retarded real-space Green function matrix (15). The
distribution function of Tn is defined as

P(T ) =
〈∑

n

δ(T − Tn)

〉
. (29)

Using P(T ), the disorder-averaged value of any quantity that can be written down in the form
of linear statistics a(T ) is expressed as [62]

〈A〉 =
〈 Nch∑

n=1

a(Tn)

〉
=

∫ 1

0
dT a(T )P(T ). (30)

For example, the conductance is described by a linear statistics g(T ) = T . Contrary to
naive expectations, stemming from comparison with Drude–Boltzmann conductance G �
G Q Nch�/L, that the transmission of every channel is T � �/L in the metallic diffusive
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(G Q Nch � G � G Q) bulk conductor, it was shown by Dorokhov [63] that in a homogeneous
multichannel wire geometry

PD(T ) = G

2G Q

1

T
√

1 − T
, cosh−2

(
Nch

g

)
< T < 1. (31)

The cut-off [5] at small T is such that
∫ 1

0 dT P(T ) = Nch ensuring that averages of the first-
and higher-order moments of T are not affected (with the proviso that Nch � G/G Q). The
Dorokhov distribution is universal—it depends only on the disorder-averaged conductance G
and not on the details of disorder, dimension, shape of the sample, carrier density, spatial
resistivity distribution, and other sample-specific properties [62]. Thus, P(T ) is a bimodal
distribution function, meaning that: most of the Tn are either Tn � 0 (‘closed’ channels) or
Tn � 1 (‘open’ channels). This has important consequences when calculating linear statistics
other than the conductance, since we can get conductance (first moment of the distribution)
without really knowing the details of P(T ) (e.g., the higher moments are probed in the case [62]
of shot-noise power, and Andreev conductance of metal/superconductor interfaces).

The simple counting of the number of Tn in each bin across the interval [0, 1] allows us to
obtain the distribution function P(T ) (in this procedure the delta function in (29) is effectively
broadened into a box function δ̄(x) equal to one inside each bin). Figure 10 plots P(T ) for
the dirty interface and the two thin slabs. The result is compared to PD(T ) of equation (31)
and the one which describes the numerical data:

Pfit(T ) = G

2G Q

1

T 3/2
√

1 − T
. (32)

This formula is, up to a numerical factor, the same as the analytical prediction of Schep and
Bauer [5] for a single dirty interface:

PSB(T ) = G

πG Q

1

T 3/2
√

1 − T
, (33)

Thus, interfaces belong to a universality class different from that of diffusive bulk conductors
characterized by the Dorokhov distribution PD(T ). However, it seems that the distribution is
valid even for thin slabs whose thickness L is grater than λF , but is smaller than the localization
radius (which in our case can be estimated in the pedestrian way as the thickness at which
conductance vanishes). This is in compliance with experimental confirmation of PSB(T ) in
a uniform Nb/AlOx /Nb Josephson junction, whose subharmonic gap structure in the I–V
characteristic is extremely sensitive to the number of conducting channels at EF and their
transmission probabilities [64], since the thickness of the realistic AlOx barrier is bigger than
λF in the junction electrodes (for example reference [20] gives a simple derivation of the
Schep–Bauer distribution without using the assumption L � λF ). In fact, even our extremely
high disorder input in the standard Anderson model generates surface conductance in the band
centre, gI � 9 × 1010 �−1 cm−2 (for a = 3 Å), that is much higher than 108 �−1 cm−2

reported for the measured value in [20]. This suggests that thin slab is more likely to play to
role of a barrier in these Josephson junctions than the strict geometrical plane. While being an
intriguing concept in disordered electron physics, universality can be frustrating for the device
engineers. Not all features of the transport through dirty interfaces are universal [5].

5. Transport through multilayers

Armed with the knowledge of transport properties of dirty interfaces and metallic homogeneous
layers, we can now undertake the study of circuits composed of such elements. The main
feature of our circuits is that they are of nanoscale size (a few λF ) and fully phase coherent
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Figure 10. The distribution function P(T ) of the transmission eigenvalues (at half-filling EF = 0)
for a single disordered interface N = 1, and thin slabs composed of two (N = 2) or three
(N = 3) such interfaces, modelled by the Anderson model with WI = 30 on a cubic lattice,
N × Ny × Nz . The disorder average is taken over an ensemble of 1000 conductors. The analytical
functions plotted are: (a) Pf it (T ) = (G/2G Q)/(T 3/2

√
1 − T ), and (b) the Dorokhov distribution

P(T ) = (G/2G Q)/(T
√

1 − T ).

(i.e., effectively at zero temperature). The choice of disorder and size of the system is driven by
the interest here in exploring the patterns of breaking (under the influence of quantum effects)
of a simple description of the multilayer in terms of a classical resistor network. Therefore, I
study such deviations from semiclassical behaviour by computing the exact zero-temperature
conductance of several multilayers, as well as of their components, using the mesoscopic Kubo
formula (14). This computation takes into account all quantum interference and quantum-size
effects from the outset. In general, resistors can be added according to the classical Ohm’s law
only when their size is larger than the dephasing length Lφ (in this case the quantum features
of diffusion can still enter through the transport properties of individual phase-coherent units
of size Lφ , an example being the weak localization effect [42] at finite temperatures). At high
enough temperatures the system can be partitioned into cubes of a macroscopic size Lφ where
quantum interference between wavefunctions scattered in different cubes can be neglected.
This makes it possible then to define an intensive quantity [22], such as conductivity, by
solving a classical random resistor network problem [66]. The quantum composition law for
quantum resistors in a chain is more complicated, since it contains a phase variable depending
on the characteristics of all scatterers [67, 68]. For example, two resistors in a series cannot
be added because resistors are not simply voltage biased, and the fluctuating phase across
each element φ = (e/h̄)

∫
v(t) dt makes it impossible to infer the properties of a circuit

from the conductance of its components [69]. Because of conductance fluctuations [70],
generated by quantum interference effects, even homogeneous sample resistance as a function
of length is not a self-averaging quantity (therefore requiring disorder averaging to restore the
ohmic scaling [21, 71]). In the Landauer–Büttiker scattering formalism, the resistor network
description corresponds to a semiclassical concatenation of the scattering matrices of individual
units (t in (28) is just one block of a full scattering matrix [62]), i.e., the concatenation of
‘probability scattering matrices’ of successive disordered regions (obtained by replacing each
element of the scattering matrix by its squared modulus [65]).

The multilayers studied here are composed of three bulk conductors joined through two
dirty interfaces. The whole structure is modelled by the TBH equation (16) on a 17 × 10 ×10
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lattice where the sixth and twelfth monatomic layers contain the same interface as was studied
in section 4. The disorder strength within the plane of the interface is fixed at WI = 30,
while disorder inside the bulk layers (composed of five monolayers) is varied. The disorder
strength is taken to be the same in the two outer layers where the diffusive bulk scattering takes
place. This type of multilayer can be viewed as a period of an infinite A/B multilayer [60]:
a layer of material A on the outside (of resistivity ρA and total thickness 2L A = 10a, where
a is the lattice spacing) and an interlayer material B between the interfaces (of resistivity ρB

and thickness L B = 5a). For example, for the chosen disorder strengths W = 3 and 6 the
corresponding bulk material resistivities at half-filling are ρ � 130 and 500 µ� cm (assuming
a = 3 Å), respectively. I neglect any potential step at the interface (caused by the conduction
band shift at the interface [4]). Such multilayers are often described semiclassically in terms
of the resistor model [24]

RRM = Nb

(
ρA

2L A

S
+ ρB

L B

S
+ 2RI

)
, (34)

where RRM is the total multilayer resistance, Nb is the number of bilayers (I study below just
one multilayer period Nb = 1), and RI is the interface resistance (evaluated in section 4 in
figure 9). Thus, the resistor model treats both bulk and interface resistances as semiclassical
elements of a circuit in which resistors add ohmically in series. Nevertheless, quantum diffusion
can be important inside each individual resistor element, as discussed above [18]. From the
measurement of RRM as a function of the layer thickness, the bulk and interface resistances
can be extracted experimentally. When quantum interference effects become important in the
CPP transport, this picture is expected to break down.

The quantum (i.e., zero-temperature) conductance of the multilayers is computed using
a standard tool throughout the paper—the mesoscopic Kubo formula of equation (14) where
the whole multilayer is treated as a single phase-coherent unit. This approach intrinsically
takes into account finite-size effects in the problem [43], as emphasized in section 2, as well
as all single-particle quantum interference effects. In all calculations the hopping integrals
throughout the disordered sample and in the leads are the same (tL = tC = t). This means that
no additional scattering, discussed in section 3, is generated at the lead–sample interface [55].
The remaining resistance can sometimes be interpreted as a series addition of two quantum
resistors. That is, the semiclassical limit of the two-probe Landauer or Kubo formula for
conductance, obtained e.g., from the stationary-phase approximation [72] of the Green function
expression (28) for the transmission of the sample, leads to

〈G〉−1 = RQPC + ρ
L

S
, (35)

which should be valid for scattering on impurities that is not too strong. The ‘contact’
resistance [73] RQPC = π h̄/e2 Nch is non-zero even for a ballistic conductor because a finite
cross-section can carry only finite currents (the voltage drop in this case occurs at the lead–
reservoir interface). A similar interpretation was given for the interface resistance [60], and
is expected to be valid also for interfaces embedded in a multilayer if there is no coherent
scattering between adjacent interfaces (e.g., when such effects are destroyed by sufficiently
strong scattering in the bulk). These formulae naturally lead to the resistor model where
different interfaces and bulk layers contribute to the CPP resistance as resistors in series. It is
often assumed that RQPC can be neglected when compared to the usually much higher resistance
of a diffusive sample, thus making the choice of the two-probe (or some other) geometry just
a matter of computational convenience [56].

Since the resistor model is expected to be retrieved in the limit of completely diffusive
scattering in the bulk and lack of phase coherence [60, 74], in the quest for substantial
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-6 -4 -2
0

2

4

6

WI=30

LA=5a LB=5a

WB=0 WA=0WA=0

C
on

du
ct

an
ce

 (
2e

2
/h

)

Fermi Energy

0

2

4

6
LA=5a LB=10a

Figure 11. The disorder-averaged (over 200 configurations) conductance of a mesoscopic
multilayer, composed of dirty interfaces and clean bulk conductors, modelled on a 17 × 10 × 10
lattice. The results are obtained from the mesoscopic Kubo formula (14) applied to the whole
multilayer (solid curve) and from using the semiclassical resistor model, GRM = (2RI − RQPC)−1

(dotted curve), where individual resistances are computed also from equation (14) and summed
accordingly (the meaning of RQPC is explained in figure 15).

quantum-effect-induced deviations from this picture I start from the opposite limit: a multilayer
composed of clean (ballistic) layers and disorder introduced only on the interfaces, WA =
WB = 0 and WI = 30. The disorder-averaged result is plotted in figure 11 for two different
thicknesses of the interlayer. Even after disorder averaging, the conductance oscillates as a
function of EF . This clearly quantum effect is a consequence of the size quantization caused
by a coherent interference of electrons reflected back and forth at the strongly disordered
interface. After adding the disorder into the outer layers, the effect persists, albeit with a
smaller amplitude of oscillations (figure 12). However, while this is plausible because of
the interlayer being composed of only a few atomic monolayers [4] (i.e., its length is of the
order of λF ), it is somewhat surprising that oscillations increase with increasing separation
between the interfaces. Furthermore, the oscillating conductance is still quite different from
the pure resonant tunnelling conductance peaks which would occur at the energies of bound
states if interfaces were replaced by the tunnelling barriers [18] (e.g., in our model this can be
generated by reducing the hopping integral tmn between the outer layers and the interlayer [55]).
Although it is obvious that this phenomenon cannot be accounted for by the semiclassical
resistor model, our findings are plotted for the sake of comparison. Also, by adding impurities
in the interlayer we can follow the disappearance of conductance oscillations (which is akin to
studies of disorder effects on conductance quantization in ballistic conductors [46]). The effect
has almost vanished at W = 2 although the mean free path, e.g., around the band centre, � ≈ 9
(obtained from the Bloch–Boltzmann equation with the Born approximation for the scattering
on a single impurity [21]) is still larger than L (i.e., the transport within the interlayer has not
yet reached the limit of fully diffusive bulk scattering).

To sweep through the transitional region between fully quantum and (expected) resistor
model semiclassical description, a disorder is introduced in both layers A and B . The results
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Figure 12. The disorder-averaged (over 200 configurations) conductance of a mesoscopic
multilayer, composed of strongly disordered interfaces and (quasi)ballistic bulk conductors (e.g.,
� ≈ 9 at half-filling for W = 2), modelled on a 17 × 10 × 10 lattice. The results are obtained from
the mesoscopic Kubo formula (14) applied to the whole multilayer as a single quantum-coherent
conductor.

are shown in figures 13 and 14. The disorder W = 6 is the strongest one in the Anderson
model where one can still use the semiclassical picture of transport at half-filling (i.e., at
EF = 0 we get [21] � ∼ a for W � 6, but localization is postponed to much higher values
of [61] W � 16.5). The other type of homogeneous layer is modelled with W = 3, which
is at the crossover between the ballistic and the diffusive transport regime, since � ≈ 4 at
EF = 0 and L A = L B = 5a. The statistical error bars on the disorder-averaged conductance
(over Nconf samples), defined as �G = √

Var G/N , are smaller than the size of the dots
(this further clarifies that small conductances of the multilayers are not the consequence of
strong disorder, but are generated by combining a few metallic resistors and dirty interfaces
in a series). The conductances of individual layers are plotted in figure 15. In the first
case WA = WB = 3, the naive application of the resistor model, where RQPC is neglected,
leads to G ′

RM (GRM = 1/RRM is the sum of component resistances) being smaller than the
quantum G computed for the multilayer as a single coherent unit. However, the subtraction of
four RQPC, which brings GRM into the form of equation (35), gives conductance higher than
GRM > G. Here RQPC is the resistance of a ballistic conductor (‘quantum point contact’) with
a cross-section A = 100a2 (see figure 15). According to equation (35), the resistances of
homogeneous layer components of the multilayer, which are plotted in figure 15 (or figure 9
for the interface alone), are the sums of their ‘intrinsic bulk’ resistance [56] and RQPC. Thus,
when adding these resistors, the final sum should contain only one RQPC if the resistor model
is to be compared with the two-probe resistance of the multilayer. In all other cases which
include a layer with diagonal disorder W = 6, both naive and more careful attempts (where
(NR −1) contact resistances RQPC are subtracted from the sum of the resistances of component
layers, where NR is the number of bulk and interface resistances used to obtain such a sum)
to use the resistor model give conductances which are greater than the ones computed for the
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Figure 13. The disorder-averaged (over 200 configurations) conductance of a mesoscopic
multilayer, composed of strongly disordered interfaces and weakly disordered bulk conductors,
modelled on a 17× 10 × 10 lattice (� ≈ 4a at half-filling for W = 3). The results are obtained from:
(a) the mesoscopic Kubo formula (14) evaluated for the whole multilayer, following the resistor
model equation (34); (b) G ′

RM = (2RA+RB +2RI )
−1; and (c) GRM = (2RA+RB +2RI −4RQPC)−1.

multilayer as a single conductor. The explanation which invokes only extra scattering on the
boundaries between different components inside the multilayer, which does not work in the
first case WA = WB = 3, is not the only one possible.

It was shown recently [21] that even in weakly disordered metals (where the Boltzmann
resistivity is practically indistinguishable from the one computed from the Kubo formula),clear
separation of a two-probe resistance into a contact term and diffusive bulk resistance,as implied
by the standard arguments of equation (35), is tempered by localization effects (i.e., terms of the
order of �/L which are neglected in equation (35)), and therefore possible only in very weakly
disordered systems. To elucidate the effects responsible for the difference between the two
ways of evaluating the multilayer conductance in figures 13 and 14, I apply the same analysis to a
multilayer where dirty interfaces are removed (i.e., εm = 0 on the sixth and twelfth plane along
the x-axis). When WA �= WB , such multilayers are similar to the junction studied in section 3
where the interface is not explicitly modelled as in section 4, but appears as a boundary between
two different homogeneous materials brought into contact. In the opposite case WA = WB , the
sample is akin to the homogeneously disordered conductor whose conductance was studied in
figure 7. The results of these calculations, plotted in figures 16 and 17, hint that the difference
between the resistor model conductance GRM and the conductance G of the multilayer as one
indivisible quantum-coherent unit is quite minuscule, with the proviso that extraneous contact
resistance terms are properly subtracted. Even though the multilayers are mesoscopic, where
electrons retain their phase coherence and are subject thereby to quantum interference effects,
disorder averaging effectively destroys most of the random interference terms (a sample self-
averages at finite temperatures when it can be partitioned into a cubes of size Lφ , as discussed
above) [75]. The surviving interference terms are exemplified by those generated by quantum
interference effects on special trajectories (i.e., Feynman paths), such as the closed loops
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Figure 14. The disorder-averaged (over 200 configurations) conductance of a mesoscopic
multilayer, composed of strongly disordered interfaces and weakly disordered bulk conductors,
modelled on a 17 × 10 × 10 lattice. The results are obtained from: (a) the mesoscopic Kubo
formula (14) evaluated for the whole multilayer, following the resistor model equation (34);
(b) G ′

RM = (2RA + RB + 2RI )
−1; and (c) GRM = (2RA + RB + 2RI − 4RQPC)−1.

-6 -4 -2 0 2 4 6
0

2

4

6

8

10

12

14

(c)

(b)

(a)

C
on

du
ct

an
ce

 (
2e

2 /h
)

Fermi Energy

0

20

40

60

80 C
onductance (2e

2/h)

Figure 15. Conductance of individual resistors comprising the multilayers of section 5: disordered
conductors modelled by the Anderson model 5 × 10 × 10 lattice with diagonal disorder strength
(a) W = 6, and (c) W = 3, and quantum point contact conductance (1/RQPC) for a clean sample
modelled on the lattice with the same cross-section (i.e., on a lattice supporting 100 conducting
channels, where the maximum number of open channels with Tn = 1 at the Fermi level in such 3D
ballistic conductors [55] is 68 at |EF | � 0.3).

responsible for weak localization [76]. These non-local weak localization effects, arising
from the interference between the amplitudes along the conjugated time-reversed loops which
span the whole phase-coherent sample, are responsible for G being slightly smaller than GRM

(localization effects inside the individual resistors are taken into account even by the resistor
model prescription). As expected in this picture, the discrepancy is very small at W = 3,
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Figure 16. The disorder-averaged (over 200 configurations) conductance of a mesoscopic
multilayer, composed of strongly disordered interfaces and weakly disordered bulk conductors,
modelled on a 17 × 10 × 10 lattice. The results are obtained: (a) from the mesoscopic Kubo
formula (14) evaluated for the whole multilayer; and (b) following the resistor model equation (34),
GRM = (2RA + RB − 2RQPC)−1. The relative error [G − GRM]/G is plotted as (c).

and increases for stronger disorder [21] W = 6. On the other hand, conductance fluctuations
‘sneak in’ through the fluctuations of the relative error [G − GRM]/G of the resistor model as
a function of Fermi energy (cf figures 16 and 17).

6. Conclusions

I have studied different macroscopically inhomogeneous disordered 3D conductors of
nanoscale size by employing both a fully quantum description, provided by the mesoscopic
two-probe Kubo formula, and a semiclassical resistor model. Before embarking on the
technicalities of computations some fundamental issues in the quantum transport theory were
scrutinized: the relationship between the Kubo formula in the exact single-particle eigenstate
representation and the Kubo formula for the finite-size sample inspired by mesoscopic physics;
the influence of the macroscopic leads (‘measuring apparatus’) on the computed two-probe
conductance; and the transmission and transport properties of a single dirty interface, which
are markedly different from standard notions developed for bulk conductors. It was shown,
by exact computation for examples of homogeneous disordered samples and inhomogeneous
metal junctions, that the mesoscopic Kubo formula allows one to obtain reliable results for
the static zero-temperature conductance (which includes the properties of the attached leads)
characterizing non-interacting quasiparticle transport. On the other hand, the evaluation of the
traditional Kubo formula, based on the exact diagonalization of the respective Hamiltonian,
ends up with a numerical discrepancy when compared to mesoscopic methods applied to
homogeneous samples (because of the necessity of handling small numerical parameters, such
as the width of the Lorentz-broadened delta function). Moreover, this traditional technique
fails completely in the case of macroscopically inhomogeneous (junctions and multilayers)
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Figure 17. The same calculation as in figure 16 (the same labels apply), but for a slightly different
multilayer where the disorder strength is increased to W = 6 in the two outer layers.

samples. This can be traced back to the conceptual obstacles in applying methods derived
for an infinite sample to a finite-size system (even after it has been extended through using
periodic boundary conditions) where the problem of dissipation and the effect of the sample
boundaries (which is crucial for the description of mesoscopic devices) are bypassed for the
sake of computational pragmatism.

The study of a single dirty interface, with specific Anderson-model-type disorder, shows
that its transmission properties are well accounted for by the Schep–Bauer distribution, but this
formula applies approximately also to thin slabs composed of a few such interfaces (which is
important for experimental investigations where one hardly deals with the geometrical planes
of theoretical analysis). The nanoscale mesoscopic multilayers containing such interfaces and
ballistic bulk conductors exhibit disorder-averaged oscillating conductance as a function of
Fermi energy. This effect of the phase coherence and quantum-size effect is slowly destroyed
upon adding the disorder inside the layers. However, even for diffusive scattering in the metallic
layer components, smooth disorder-averaged multilayer conductances cannot be completely
accounted for by the resistor model (which sums layer and interface resistances as resistors
connected in series). Since this classical approach works well when interfaces are removed
(up to tiny localization effects arising from interference effects inside the whole sample), we
can conclude that just a single plane of a strongly disordered material is enough to bring new
quantum effects into the conductance of mesoscopic metallic multilayered structures.
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[16] Nikolić B K 2001 Phys. Rev. B 64 165303
[17] Sanvito S, Lambert C J, Jefferson J H and Bratkovsky A M 1999 Phys. Rev. B 59 11 936
[18] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[19] Kramer B and MacKinnon A 1993 Rep. Prog. Phys. 56 1469
[20] Naveh Y, Patel V, Averin D V, Likharev K K and Lukens J E 2000 Phys. Rev. Lett. 85 5404
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